REDOX REACTION

 (Reduction-Oxidation Reaction)
What will / Iearn?

- What is a redox reaction?
- What is oxidation and reduction? (and how to identify them)
- What are oxidizing and reducing agents?
- What is oxidation state?
- What is oxidation and reduction in terms of oxidation state?
- How to assign the oxidation state?
- How to use oxidation state to determine which species is oxidized / reduced?

Redox

Oxidation	Reduction
Gain in oxygen	Loss of oxygen
Loss of hydrogen	Gain in hydrogen
Loss of electrons	Gain of electrons

Redox Reactions

The term redox is a shortened form of oxidationreduction.

Oxidation is a process in which one atom loses or donates electrons to another.

Reduction is a process in which one atom gains or accepts electrons from another.

In any redox reaction, one species is ALWAYS oxidized and one is ALWAYS reduced. You cannot have oxidation without reduction also occurring.

Development of oxidation and reduction reaction concept

1. Reaction of reduction oxidation based on releasing (lossing) and gaining of oxygen
a. Oxidation reaction Oxidation reaction is a reaction of gaining (capturing) of oxygen by a substance
Example:

$$
\begin{aligned}
& \mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{\mathrm{g})} \\
& \mathrm{P}_{4(\mathrm{~s})}+5 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5(\mathrm{~s})}
\end{aligned}
$$

b. Reduction reaction Reduction reaction is a reaction of releasing (lossing) of oxygen from an oxide compound Example:

$$
\begin{aligned}
& \mathrm{CuO}_{(\mathrm{s})}+\mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{Cu}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
& \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{CO}_{(\mathrm{g})} \longrightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{2(\mathrm{~g})}
\end{aligned}
$$

2. Reduction oxidation reaction based on electron transfer

a. Oxidation reaction

Oxidation reaction is a reaction of electron releasing (lossing) from a substance. Example:

$$
\begin{aligned}
& \mathrm{Na} \longrightarrow \mathrm{Na}^{+}+\mathrm{e}^{-} \\
& \mathrm{Mg} \longrightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \\
& \mathrm{Cu} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}
\end{aligned}
$$

b. Reduction reaction

Reduction reaction is a reaction of electron gaining by a substance. Example:

$$
\begin{aligned}
& \mathrm{Cl}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-} \\
& \mathrm{S}+2 \mathrm{e}^{-} \longrightarrow \mathrm{S}^{2-}
\end{aligned}
$$

3. Reduction oxidation reaction based on oxidation number change

a. Oxidation reaction

Oxidation reaction is a chemical reaction which is accompanied by increasing of oxidation number.

Example:

b. Reduction reaction Reduction reaction is a chemical reaction which is accompanied by decreasing of oxidation number.

Example:

$$
\begin{aligned}
& \mathrm{Sn}^{4+}{ }_{(\mathrm{aq})} \longrightarrow \mathrm{Sn}^{2+}{ }_{(\mathrm{aq})} \\
& \mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{Cl}^{-}{ }_{(\mathrm{g})}
\end{aligned}
$$

Rules for Assigning Oxidation Numbers

1. The oxidation state of any neutral element in its naturally occurring state is zero.

$$
\mathrm{Na}, \mathrm{Be}, \mathrm{~K}, \mathrm{Cl}_{2}, \mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{P}_{4}=0
$$

2. The oxidation number of any cation or anion composed of just one atom is that ion's actual charge.

$$
\mathrm{H}^{+}=+1 ; \quad \mathrm{Li}^{+}=+1 ; \quad \mathrm{Fe}^{3+}=+3 ; \quad \mathrm{O}^{2-}=-2
$$

3. The oxidation number of oxygen is usually -2. In $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{O}_{2}{ }^{2-}$ it is -1 .
4. The oxidation number of hydrogen is +1 except when it is bonded to metals in binary compounds. In these cases, its oxidation number is -1 .

Rules for Assigning Oxidation Numbers continued

5. The oxidation number of F is always -1 .
6. Oxidation numbers do not have to be integers. Oxidation number of oxygen in the superoxide ion, O_{2}^{-}, is $-1 / 2$.
7. When you begin, assign the most electronegative element present the charge it would have if it were an anion. If oxygen is present, it has the higher priority and will always be -2 .
8. The sum of the oxidation numbers of all the atoms in a molecule or ion is equal to the charge on the molecule or ion.

Oxidation Number

is a number that states electrical charge possessed by each one element atom in the molecular compound or the ion.

In the molecules of ionic compound, electrical charge contained element atom can be raised by transfering of electrons.
In the formation of ionic bond:
-Metal atom losses electron to form the positive ion.
-Nonmetal atom gains electron to form the negative ion.
In the molecule of $\mathbf{M g F}_{2}$, consist of $\mathbf{M g}^{2+}$ ion with charge of $\mathbf{2 +}$ and \mathbf{F}^{-}ion with charge of 1 -
Said that in the molecule of MgF_{2}, oxidation number of $\mathbf{M g}$ is $\mathbf{+ 2}$, and oxidation number of F is $\mathbf{- 1}$.
In the molecule of covalent compound, the raising of the electrical charge each element atom is caused by its existence the difference of electronegativity of element, so that occur polarization covalent bond. In the polar covalent compound, the more electronegative atom become more negative charge and the other atom become more positive charge. In the polar covalent compound of $\mathbf{H}_{\mathbf{2}} \mathbf{O}, \mathbf{H}$ contain $\mathbf{1 +}$ and \mathbf{O} contain 2-

Oxidation Number Rules

1. Oxidation number of free elements

Free elements (include molecular elements: $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{~N}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}$, $\mathrm{Br}_{2}, \mathrm{I}_{2}, \mathrm{P}_{4}, \mathrm{~S}_{8}$) have oxidation number of 0 (zero).
2. Oxidation number of fluorine

In its compounds, oxidation number of F always $\mathbf{- 1}$.
3. Oxidation number of hydrogen

In its compounds, oxidation number of H always +1.
Except, hydrogen in the hydride compounds (compound of H with metal), oxidation number of H , is -1
Example:
In the compound of $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$,
oxidation number of H , is +1
In the hydride compound, like $\mathrm{LiH}, \mathrm{NaH}, \mathrm{MgH}_{2}$, oxidation
number
of H, is -1
4. Oxidation number of oxygen

In its compound, oxidation number of O always -2
For example: compound of $\mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SO}_{3}, \mathrm{CO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{CO}_{3}$,
$\mathrm{H}_{3} \mathrm{PO}_{4}$, etc, oxidation number of O , is -2
Exception occur in the compound of peroxide, superoxide, and $\mathrm{F}_{2} \mathrm{O}$.
a. In compound of peroxide, like $\mathrm{Na}_{2} \mathrm{O}_{2}, \mathrm{BaO}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$, oxidation number of O , is $\mathbf{- 1}$.
b. In compound of superoxide, KO_{2}, oxidation number of O , is $-1 / 2$.
c. In compound of $\mathrm{F}_{2} \mathbf{O}$, oxidation number of O , is $\mathbf{+ 2}$.
5. Oxidation number of metals

Metallic elements in its compound always has oxidation number with positive sign.
a. Metallic elements of group A in its compound only has one type of oxidation number, that is the same with its group number, except metallic elements of group IVA and VA
Metals of group IA (Alkali metals) have oxidation number of $\boldsymbol{+ 1}$
Metals of group IIA (Alkaline earth metals) have oxidation number of $\boldsymbol{+ 2}$
Metals of group IIIA have oxidation number of +3
Oxidation number of metals of group IVA, $\mathrm{Sn}=+2,+4, \mathrm{~Pb}=+2,+4$
Oxidation number of metal of group $\mathrm{VA}, \mathrm{Bi}=+2$
b. Generally, metallic elements of group B has oxidation number more than one type.
Example:
Table 8.1.
Oxidation numbers of several elements of group B

Elements of group B		Oxidation numbers
Name	Symbol	
Zink	Zn	+2
Silver	Ag	+1
Copper	Cu	+1, +2
Gold	Au	+1, +3
Iron	Fe	+2, +3
Lead	Pb	+2, +4

6. Oxidation number of monoatomic ion

Oxidation number of mono atomic ions is equal to the charge on that ion Example:
Na^{+}ion has oxidation number of +1
Ba^{2+} ion has oxidation number of $+\mathbf{2}$
Fe^{3+} ion has oxidation number of +3
Cl^{-}ion has oxidation number of -1
S^{2-} ion has oxidation number of $\mathbf{- 2}$
7. The sum of oxidation number of element atoms in a compound molecule is equal to 0 (zero)
$\Sigma \mathrm{o} . \mathrm{n}$. of element in compound molecule $=0$
Example: $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{array}{r}
\text { (o.n. of H } \times 2 \text {) }+(\text { o.n. of } O \times 1)=0 \\
\{(+1) \times 2\}+\{(-2) \times 1\}=0 \\
\{+2\}+\{-2\}=0
\end{array}
$$

8. The sum of oxidation number of element atoms in a polyatomic ion is equal to the charge on that ion.
$\sum \mathrm{o} . \mathrm{n}$. of element in ion $=$ charge of ion
Example: OH^{-}

$$
\text { (o.n. of } O \times 1)+(\text { o.n. of } H \times 1)=-1 ~ \begin{aligned}
& =-1 \\
\{(-2) \times 1\}+\{(+1) \times 1\} & =-1 \\
\{-2\}+\{+1\} & =-1
\end{aligned}
$$

The oxidation number of simple ion is the charge on that ion

$$
\begin{array}{lll}
\text { E.g. } & \mathrm{Cl} \text { is -1, } & \mathrm{Na}^{+} \text {is +1 } \\
\mathrm{O}^{2-} \text { is -2 } & \mathrm{Ca}^{2+} \text { is +2 } \\
\mathrm{Al}^{3+} \text { is +3 } & \mathrm{N}^{3-} \text { is -3 } \\
\mathrm{S}^{2-} \text { is -2 } &
\end{array}
$$

The sum of oxidation numbers in a complex ion is the charge on the ion

$$
\begin{aligned}
& \mathrm{SO}_{4}{ }^{2-}=-2 \text { [total] } \\
& \mathrm{PO}_{4}{ }^{3-}=-3 \\
& \mathrm{NH}_{4}^{+}=+1 \\
& \mathrm{NO}_{3}=-1
\end{aligned}
$$

- Oxidation is a decrease in oxidation number
- Reduction is a gain of oxidation number

$$
\begin{array}{ccc}
\mathrm{Mg}+\mathrm{Cu}^{2+}= & \mathrm{Mg}^{2+}+ & \mathrm{Cu} \\
0 & +2 & +2
\end{array}
$$

- Mg has been oxidised Ox. No. zero to +2
- Loss of 2 electrons
${ }^{-}$Cu has been reduced Ox. No. +2 to zero
- Gain of 2 electrons

Determining Oxidation Numbers of Elements

The oxidation number of an element in the molecule or in the ion, by use the rules of oxidation numbers can be determined.
-Write down the molecular or ionic formula which will be determined oxidation number its element and between one atom of element and the others, given enough space.
-Write each oxidation number of elements in below it and write x for element that will be determined its oxidation number.
\cdot Use the rules of oxidation number, that is rule of number 7 or 8 , for determine x value.

Example:

Determine the following element oxidation number
a. S in molecule of $\mathrm{H}_{2} \mathrm{SO}_{4}$
b. Cr in ion of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$

Given : Molecule of $\mathrm{H}_{2} \mathrm{SO}_{4}$ Ion of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
Find : a. oxidation number of S in $\mathrm{H}_{2} \mathrm{SO}_{4}$
b. oxidation number of Cr in $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$

Solution :

a. $\mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\text { o. n. } H=+1, \quad \text { o. n. } O=-2, \quad \text { o. n. } S=x
$$

$$
\begin{array}{ccc}
\mathrm{H}_{2} & \mathrm{~S} & \mathrm{O}_{4} \\
+1 & x & -2
\end{array}
$$

\sum o. n. element in molecule $=0$
$(2 x$ o. n. H) $+(1 \times$ o.n. S) $+(4 x$ o.n. $O)=0$
$\{2 x(+1)\}+\{1 x(x)\}+\{4 x(-2)=0$
$(+2)+(x)+(-8)=0$
$x=+8-2 \Rightarrow x=+6$
\Rightarrow The oxidation number of S in $\mathrm{H}_{2} \mathrm{SO}_{4}$ is $\mathbf{+ 6}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
o. n. $O=-2$, o. n. $C r=x$

$$
\left(\begin{array}{cc}
\mathrm{Cr}_{2} & \mathrm{O}_{7} \\
x &)^{2-}
\end{array}\right.
$$

\sum o. n. of element in ion = charge of ion
($2 x$ o.n. Cr) + (7x o.n. O) $=-2$
$\{2 x(x)\}+\{7 x(-2)\}=-2$
$(2 x)+(-14)=-2 \Rightarrow 2 x=+14-2 \Rightarrow x=\frac{+12}{2}$
$x=+6$
\Rightarrow The oxidation number of Cr in $\mathrm{CrO}_{4}{ }^{2-}$ is +6

Determine the oxidation and reduction process, oxidising and reducing agent that occurs in the reactions below.
(a) $\mathbf{M g}+\mathrm{PbO} \longrightarrow \mathrm{MgO}+\mathrm{Pb}$
$(\mathrm{b}) \mathbf{C u} \longrightarrow \mathbf{C u}^{2+}+2 \mathbf{e}^{-} ; \mathbf{C u}^{2+}+2 \mathbf{e}^{-} \longrightarrow \mathbf{C u}$
(c) $2 \mathrm{CuO}+\mathrm{C} \longrightarrow 2 \mathrm{Cu}+\mathrm{CO}_{2}$
(d) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \longrightarrow 2 \mathrm{Fe}+3 \mathrm{CO}$
$(\mathrm{e}) \mathrm{Mg}+\mathrm{CuO} \longrightarrow \mathrm{MgO}+\mathrm{Cu}$

Test Yourself :

Calculate the oxidation number of the following elements: (a)Manganese , Mn in potassium manganate (VII), KMnO (b)Manganese, $\mathbf{M n}$ in manganate(VII) ion, $\mathrm{MnO}_{4}{ }^{-}$
(c)Chromium, $\mathbf{C r}$, in potassium dichromate(VI), $\mathbf{K}_{\mathbf{2}} \mathbf{C r}_{\mathbf{2}} \mathbf{O}_{\mathbf{7}}$ (d)Cromium, $\mathrm{Cr}_{\text {, in }}$ chromate(VI) ion, $\mathrm{CrO}_{4}{ }^{2-}$
(e)Iron in irron(II) chloride, $\mathbf{F e C l}_{2}$
(f) Iron in iron(||||) chloride, FeCl_{3}
(g)Carbon, C in sodium carbonate, $\mathbf{N a}_{\mathbf{2}} \mathbf{C O}_{\mathbf{3}}$

In each of the cases above, the oxidation number of each element is represented by the value of X.

Redox Reaction

In the chemical reaction, oxidation reaction and reduction reaction always occur together, it is called oxidation reduction reaction abreviated as redox reaction.

In the redox reaction occurs transfering of electrons from the substance that undergo oxidation to the substance that undergo reduction. Therefore, redox reaction is also called reaction of transfering electrons
Special charateristic redox reaxtion is the oxidation number change.
${ }^{\wedge}>$ Oxidation : lossing electron, increasing oxidation number.
${ }^{4}$ Reduction : gaining electron, decreasing oxidation number.

The chemical reaction that does not espoused oxidation number change (increasing or decreasing in oxidation number) called non-redox reaction.

Example:

1. Redox reaction

Reaction of copper(II) oxide with hydrogen gas to form copper and water vapor

Total changing in o.n. of His +2
$\left.{ }^{4}\right)$ In the redox reaction:
total number of increasing in oxidation number in oxidation reaction $=$ total number of decreasing in oxidation number in reduction reaction.
2. Non redox reaction

$$
\begin{aligned}
& \mathrm{CuO}_{(\mathrm{s})}+\mathrm{HCl}_{(\mathrm{g})} \longrightarrow \mathrm{CuCl}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \text { (non-redox) } \\
& \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})}+\mathrm{KI}_{(\mathrm{g})} \longrightarrow \mathrm{PbI}_{2(\mathrm{~s})}+\mathrm{KNO}_{3(\mathrm{aq})} \quad \text { (non-redox) }
\end{aligned}
$$

Note: In the non-redox reaction above, there are no oxidation number changes of elements.
The oxidation numbers of elements in its compound is constant.

Redox Reactions

Oxidizing and Reducing Agents

If an element's oxidation number has increased in a reaction, this means the element has lost electrons and has been oxidized.

If an element's oxidation number has decreased, this means it has gained electrons in the reaction and has been reduced.

$$
\begin{array}{rll}
\text { Example: } & 2 \mathrm{Mg}+\mathrm{O}_{2} & \longrightarrow \mathbf{2 M g O} \\
2 \mathrm{Mg} & \longrightarrow 2 \mathrm{Mg}^{2+} & \mathrm{Mg} \text { has been oxidized } \\
\mathrm{O}_{2}^{0} & \longrightarrow \quad 2 \mathrm{O}^{2-} \quad \mathrm{O} \text { has been reduced }
\end{array}
$$

Oxidizing and Reducing Agents

Example: Identify the oxidizing agents and reducing agents in the following reactions:

1. $\mathrm{Zn}(s)+\mathrm{CuSO}_{4}(a q) \longrightarrow \mathrm{ZnSO}_{4}(a q)+\mathrm{Cu}(s)$

$\mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}$	Zn is oxidized	Zn is the reducing agent
$\mathrm{Cu}^{2+} \longrightarrow \mathrm{Cu}$	Cu^{2+} is reduced	CuSO_{4} is the oxidizing agent

2. $2 \mathrm{~K}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \longrightarrow 2 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{K} \rightarrow \mathrm{K}^{+}$
$\mathrm{H}^{+} \rightarrow \mathrm{H}^{\circ}$
H^{+}is reduced

K is the reducing agent
$\mathrm{H}_{2} \mathrm{O}$ is the oxidizing agent

List of common Oxidising and Reducing Agents

Oxidising agents	Reducing agents
Oxygen $\left(\mathrm{O}_{2}\right)$	Hydrogen $\left(\mathrm{H}_{2}\right)$
Chlorine $\left(\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}^{-}\right)$	Reactive metals $\left(\mathrm{M} \rightarrow \mathrm{M}^{2+}\right)$
Dichromate(VI) ions in acid $\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cr}^{3+}\right)$	Carbon monoxide $\left(\mathrm{CO} \rightarrow \mathrm{CO}_{2}\right)$
Manganate(VII) ions in acid $\left(\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}\right)$	Carbon (C)
Manganate(VII) ions in neutral or alkali $\left(\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{MnO}_{2}\right)$	Iron(II) salts $\left(\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}\right)$
Manganese((IV) oxide in acid $\left(\mathrm{MnO}_{2} \rightarrow \mathrm{Mn}^{2+}\right)$	Thiosulphate ions to tetrathionate ions $\left(\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}\right)$
Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}\right)$	Ethanedioate ions $\left(\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{CO}_{2}\right)$
Concentrated sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SO}_{2}\right)$	Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}\right)$
Iron(III) salts $\left(\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}^{2+}\right)$	Sulphate((V) to sulphate(VI) $\left(\mathrm{SO}_{3}^{2-} \rightarrow \mathrm{SO}_{4}^{2-}\right)$
	Iodide to iodine $\left(\mathrm{I}^{-} \rightarrow \mathrm{I}_{2}\right)$

Realise something?

$\mathrm{H}_{2} \underline{O}_{2}$ is both an oxidising and a reducing agent! If a stronger oxidising agent is present, $\mathrm{H}_{2} \mathrm{O}_{2}$ is reducing

Redox Reactions

Oxidizing and Reducing Agents

The element that was oxidized "donated" its electrons to the element that was reduced (gained electrons). Thus, the species that contains the element being oxidized is said to be the reducing agent.

The element that was reduced "stole" electrons from the element that was oxidized (lost electrons). Thus, the species that contains the element being reduced is said to be the oxidizing agent.
The more readily an element is oxidized, the better it is as a reducing agent. Conversely, the more readily an element is reduced, the better it is as an oxidizing agent.

Oxidizing Agent (Oxidant) and Reducing Agent (Reductant)

The reactants that involve in a redox reaction can be differentiated into two kinds, that is oxidizing agent (oxidant) and reducing agent (reductant)
Oxidizing agent (oxidant)
Oxidizing agent is:

* a reactant that oxidizes other reactant
* a reactant that can gain electron
* a reactant that in a reaction undergoes reduction
* a reactant that in a reaction undergoes decreasing in oxidation number
Examples:
Halogen, $\mathrm{F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}$
Oxygen, O_{2}

(reduction)

Cl_{2} is oxidizing agent (oxidant), because in that reaction Cl_{2} undergoes reduction or decreasing in oxidation number, from 0 to -1

-Reducing agent (reductant)

Reducing agent is:

* a substance (reactant) that reduces other substances (reactants)
* a substance (reactant) that can loss electron
* a substance (reactant) that in the reaction undergoes oxidation
* a substance (reactant) that undergoes increasing in oxidation number

Example:
Hydrogen, H_{2}
Ion halides; $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
metals

H_{2} is reducing agent (reductant), because in that reaction H_{2} undergoes oxidation or increasing in oxidation number, from 0 to +1

Example problem :

Given a redox reaction:

$$
3 \mathrm{~S}_{(\mathrm{s})}+2 \mathrm{KClO}_{3(\mathrm{~s})} \longrightarrow 3 \mathrm{SO}_{2(\mathrm{~g})}+2 \mathrm{KCl}_{(\mathrm{s})}
$$

a. Identify and under line, element atoms of reactants undergo change in oxidation number.
b. Determine the reactants that undergo reduction - oxidation include their product, and calculate its oxidation number change
c. Determine the reactant behaves as oxidant and reductant.

Answer:
a. In the redox reaction:

Element atoms undergo change in oxidation number is:

- S : oxidation number of S increases from 0 to +4
- Cl : oxidation number of Cl element atom in KClO_{3} decreases from +5 to -1
b. In the redox reaction:

c. In the redox reaction:

The compound of KClO_{3} is oxidizing agent

Auto Redox Reaction (Disproportionation)

Auto redox reaction is a reaction of reduction and oxidation that occur in the same substance (reactant).

Example of auto redox reaction:
Reaction of chlorine gas with sodium hydroxide solution

IUPAC Nomenclature

The compound that is formed by the elements have more than one type of oxidation number, its name diferentiated by the Roman number writing in the bracket in the back of that element name.
The Roman number shows the value of oxidation number of that element.
The compound that is formed by the element only has one type of oxidation number, the Roman number does not need writen.
This IUPAC nomenclature applies in both ionic and covalent compounds.
Examples IUPAC name of binary covalent compound:
CO : carbon(II) oxide (oxidation number of $\mathrm{C}=+2$)
CO_{2} : carbon(IV) oxide (oxidation number of $\mathrm{C}=+4$)
$\mathrm{P}_{2} \mathrm{O}_{3}$: phosphorus(III) oxide (oxidation number of $\mathrm{P}=+3$)
$\mathrm{N}_{2} \mathrm{O}_{5}$: nitrogen(V) oxide
$\mathrm{Cl}_{2} \mathrm{O}_{7}$: chlorine(VII) oxide
(oxidation number of $\mathrm{N}=+5$)
(oxidation number of $\mathrm{Cl}=+7$)

Examples IUPAC name of binary ionic compounds

ZnCl_{2} = zink chloride
$\mathrm{Al}_{2} \mathrm{O}_{3}=$ aluminium oxide
$\mathrm{Cu}_{2} \mathrm{O}=$ copper(I) oxide
CuS = copper(II) sulfide

Identify and under line, element atoms of substaces of the following reaction undergo change in oxidation number.

$$
\mathrm{Crl}_{3(a g)}+\mathrm{KOH}_{(a q)}+\mathrm{Cl}_{2(g)} \longrightarrow-\mathrm{KCO}_{4(a q)}+\mathrm{KIO}_{4(a q)}+\mathrm{KCl}_{4(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

Redox Reactions

Example: Consider the compound PCl_{3}

Cl is the more electronegative element, so assign each Cl an oxidation \# equal to its charge as an anion ($=-1$).
PCl_{3} is a neutral molecule, so the sum of the oxidation numbers for P and Cl must add to 0 . Let $\mathrm{x}=$ oxidation \# of $\mathrm{P}: \mathrm{x}+3(-1)=0$ (8) $\mathrm{x}=+3$
$\mathrm{PCl}_{3}: \quad \mathrm{P}=+3, \mathrm{Cl}=-1$

Redox Reactions

example: Consider HClO_{4}.

Since oxygen is present, but not as a peroxide ion, the oxygen is assigned an oxidation \# of -2 . The H is not bonded to a metal, so it must have an oxidation \# of +1 . Let $x=$ oxidation number of Cl , and note that the sum of the oxidation \#'s must equal zero since HClO_{4} has a net charge of zero:
$0=+1+x+4(-2)$ solving for x gives $x=+7=\mathrm{Cl}$.

$$
\mathrm{HClO}_{4}: \quad \mathrm{H}=+1, \quad \mathrm{Cl}=+7, \quad \mathrm{O}=-2
$$

Note carefully that Cl is $\mathrm{NOT} \mathrm{a}+7$ cation in HClO_{4} !! $\mathrm{The}+7$ oxidation state simply tells us the electron density around Cl in HClO_{4} is significantly lower than the electron density around Cl in its elemental state.

Determine the oxidation state of...

1) H in $\mathrm{H}_{2} \mathrm{O}$
2) \mathbf{N} in $\mathbf{N H}_{4}{ }^{+}$
3) S in $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
4) Cr in $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$

Determine the oxidation state of...

* Sum of all oxidation states of all atoms = Overall Charge of molecule / ion / atom

1) H in $\mathrm{H}_{2} \mathrm{O}$

Let the oxidation state of H be $x_{\text {. }}$

Thus, in $\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{x}+(-2)=0$
$x=1$

Determine the oxidation state of...

* Sum of all oxidation states of all atoms = Overall Charge of molecule / ion / atom

2) \mathbf{N} in $\mathbf{N H}_{4}{ }^{+}$

Let the oxidation state of \mathbf{N} be \boldsymbol{x}.

Thus, in $\mathbf{N H}_{4}{ }^{\mathbf{+}}, \boldsymbol{x + 4 (+ 1)}=\mathbf{+ 1}$ $x=-3$

Determine the oxidation state of...

* Sum of all oxidation states of all atoms = Overall Charge of molecule / ion / atom

3) S in $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$

Let the oxidation state of S be x.

Thus, in $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}, 2 x+3(-2)=-2$ $x=+2$

Determine the oxidation state of...

* Sum of all oxidation states of all atoms = Overall Charge of molecule / ion / atom

4) Cr in $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$

Let the oxidation state of Cr be \boldsymbol{x}.

Thus, in $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}, 2 x+7(-2)=-2$ $x=+6$

Example 1

$\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$
$+7 \rightarrow+2$
Let the oxidation state of Mn be x.
Thus, in $\mathrm{MnO}_{4}{ }^{-}, x+4(-2)=-1$
$x=+7$

- Manganese is reduced from oxidation state of +7 in $\mathrm{MnO}_{4}=$ to +2 in Mn^{2+}, while iron is oxidised from oxidation state of +2 in Fe^{2+} to +3 in Fe^{3+}.

Special Redox: Disproportionation

Definition:

A disproportionation reaction is a redox reaction in which one species is simultaneously oxidised and reduced.

$$
\begin{array}{ll}
\mathrm{Cl}_{2}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{ClO}^{-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \\
\mathbf{0} & \mathbf{+ 1} \\
\mathbf{0}
\end{array}
$$

Chlorine is simultaneously reduced from oxidation state of 0 in Cl_{2} to -1 in $\mathrm{Cl}=$, and oxidised from oxidation state of 0 in Cl_{2} to +1 in $\mathrm{ClO}=$

Balancing redox reactions

Example:

Try to balance the following reaction by trial and error.
$\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$ Possible answer:
$\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{MnO}_{4}^{-}+4 \mathrm{H}_{2} \mathrm{O}_{2}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+3 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Balancing redox reactions

- Example:

Try to balance the following reaction by trial and error.

$$
\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

- Actual answer:

$$
2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

- Note: You might not even be told at the beginning that H^{+}is reactant, $\mathrm{H}_{\mathbf{2}} \mathbf{O}$ is product.

The half-equation method

- Write down the given reactants and products of the reaction
- Identify the atoms in the given species that are undergoing oxidation / reduction and construct the unbalanced oxidation / reduction half-equations
- Balance both the half-equations using the following steps:
- Balance the "odd" atoms ("odd" atoms refer to atoms other than oxygen and hydrogen)
- Balance oxygen atoms by adding $\mathrm{H}_{2} \mathbf{O}$ molecules
- Balance hydrogen atoms by adding H^{+}ions
- Balance charges by adding electrons
- Multiply the balanced half-equations by appropriate integers such that the number of electrons in both halfequations are equal
- Add the resulting half-equations together, and eliminate any common species on both sides to obtain the balanced equation.

The half-equation method

- Example:
- Balance the following reaction: $\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{O}_{2}$

The half-equation method

- Step 1: Write down the given reactants and products of the reaction
$\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{O}_{2}$

The half-equation method

- Step 2: Identify the atoms in the given species that are undergoing oxidation / reduction and write the unbalanced oxidation / reduction half-equations

- Reduction half-equation:

$$
\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+}
$$

- Oxidation half-equation:

$$
\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}
$$

The half-equation method

- Step 3: Balance both the half-equations using the following steps:
- Balance the atoms undergoing oxidation / reduction
- Reduction half-equation:

$$
\operatorname{MnO}_{4}^{-} \longrightarrow \operatorname{Mn}^{2+}
$$

The half-equation method

- Step 3: Balance both the half-equations using the following steps:
- Balance oxygen atoms by adding $\mathrm{H}_{2} \mathrm{O}$ molecules

Reduction half-equation:

$$
\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

The half-equation method

- Step 3: Balance both the half-equations using the following steps:
- Balance hydrogen atoms by adding H^{+}ions

Reduction half-equation:

$$
\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

The half-equation method

- Step 3: Balance both the half-equations using the following steps:
- Balance hydrogen atoms by adding H^{+}ions
- Reduction half-equation:

$$
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

The half-equation method

- Step 3: Balance both the half-equations using the following steps:
- Balance charges by adding electrons
- Reduction half-equation:

$$
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

The half-equation method

- Step 3: Balance both the half-equations using the following steps:
- Balance charges by adding electrons

Reduction half-equation:

$$
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 e^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

The half-equation method

- Step 3: Balance both the half-equations using the following steps:

Reduction half-equation:

$$
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 e^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

- Oxidation half-equation:

$$
\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}
$$

The half-equation method

- Step 3: Balance both the half-equations using the following steps:
- Balance the atoms undergoing oxidation / reduction
- Reduction half-equation:
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
- Oxidation half-equation:

$$
\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}
$$

The half-equation method

- Step 3: Balance both the half-equations using the following steps:
- Balance oxygen atoms by adding $\mathrm{H}_{2} \mathrm{O}$ molecules
- Reduction half-equation:
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
- Oxidation half-equation:
$\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}$

The half-equation method

- Step 3: Balance both the half-equations using the following steps:
- Balance hydrogen atoms by adding H^{+}ions

Reduction half-equation:

$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

- Oxidation half-equation:

$$
\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}
$$

The half-equation method

- Step 3: Balance both the half-equations using the following steps:
- Balance hydrogen atoms by adding H^{+}ions

Reduction half-equation:

$$
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

- Oxidation half-equation:

$$
\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}
$$

The half-equation method

- Step 3: Balance both the half-equations using the following steps:
- Balance charges by adding electrons
- Reduction half-equation:
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
- Oxidation half-equation:
$\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}$

The half-equation method

- Step 3: Balance both the half-equations using the following steps:
- Balance charges by adding electrons

Reduction half-equation:
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

- Oxidation half-equation:
$\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 e^{-}$

The half-equation method

- Step 4: Multiply the balanced half-equations by appropriate integers such that the number of electrons in both half-equations are equal

Reduction half-equation:

$$
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

- Oxidation half-equation:
$\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 e^{-}$

The half-equation method

- Step 4: Multiply the balanced half-equations by appropriate integers such that the number of electrons in both half-equations are equal
- Reduction half-equation:

$$
\mathrm{MnO}_{4}^{--}+8 \mathrm{H}^{+}+5 e^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

- Oxidation half-equation:
$\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 e^{-}$

The half-equation method

- Step 4: Multiply the balanced half-equations by appropriate integers such that the number of electrons in both half-equations are equal
- Reduction half-equation:
$\left(\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}\right) \times 2$
- Oxidation half-equation:

$$
\left(\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 e^{-}\right) \times 5
$$

The half-equation method

- Step 4: Multiply the balanced half-equations by appropriate integers such that the number of electrons in both half-equations are equal
- Reduction half-equation: x2
$2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+10 e^{-} \longrightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$
- Oxidation half-equation:
$\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 e^{-} \times 5$

The half-equation method

- Step 4: Multiply the balanced half-equations by appropriate integers such that the number of electrons in both half-equations are equal

Reduction half-equation: x 2

$$
2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+10 e^{-} \longrightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}
$$

- Oxidation half-equation: x 5

$$
5 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 5 \mathrm{O}_{2}+10 \mathrm{H}^{+}+10 e^{-}
$$

The half-equation method

- Step 5: Add the resulting half-equations together, and eliminate any common species on both sides to obtain the balanced equation.
- Reduction half-equation: x 2

$$
2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+10 e^{-} \longrightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}
$$

- Oxidation half-equation: x 5

$$
5 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 5 \mathrm{O}_{2}+10 \mathrm{H}^{+}+10 e^{-}
$$

The half-equation method

- Step 5: Add the resulting half-equations together, and eliminate any common species on both sides to obtain the balanced equation.

$$
\begin{aligned}
2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow & 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O} \\
+5 \mathrm{H}_{2} \mathrm{O}_{2} & +5 \mathrm{O}_{2}+10 \mathrm{H}^{+}+16 e^{-}
\end{aligned}
$$

The half-equation method

- Step 5: Add the resulting half-equations together, and eliminate any common species on both sides to obtain the balanced equation.

Balanced Equation:

$$
\begin{array}{rll}
2 \mathrm{MnO}_{4}^{-} & +6 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow & 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O} \\
+5 \mathrm{H}_{2} \mathrm{O}_{2} & +5 \mathrm{O}_{2}+10 \mathrm{H}^{+}+10 e^{-}
\end{array}
$$

The half-equation method

- Step 5: Add the resulting half-equations together, and eliminate any common species on both sides to obtain the balanced equation.
- Balanced Equation:
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

